
Fault-tolerant Programs as Multi-state Systems

Gregory Levitin
The Israel Electric Corporation

Reliability Department
Israel

levitin@iec.co.il

Abstract

The paper suggests a model of fault tolerant software system and demonstrates that this system has multi-
state nature when the execution time is considered to be the measure of its performance. It presents an
algorithm for evaluating the distribution of the system execution time and formulates optimization
problems of software version sequencing and choice.

1. Introduction

Software failures are caused by errors made in various phases of program development. When the
software reliability is of critical importance, special programming techniques are used in order to achieve
its fault tolerance. Two of the best-known fault-tolerant software design methods are N-version
programming (NVP) and recovery block scheme (RBS). Both methods are based on the redundancy of
software modules (functionally equivalent but independently developed) and the assumption that
coincident failures of modules are rare (Teng and Pham 2003). The fault tolerance usually requires
additional resources and results in performance penalties (particularly with regard to computation time),
which constitutes a tradeoff between software performance and reliability.
The NVP approach presumes the execution of N functionally equivalent software modules (called
versions) that receive the same input and send their outputs to a voter, which is aimed at determining the
system output. The voter produces an output if at least M out of N outputs agree (it is presumed that the
probability that M wrong outputs agree is negligibly small). Otherwise, the system fails. Usually majority
voting is used in which N is odd and M=(N+1)/2.
In some applications, the available computational resources do not allow all of the versions to be executed
simultaneously. In these cases, the versions are executed according to some predefined sequence and the
program execution terminates either when M versions produce the same output (success) or when after
the execution of all the N versions the number of equivalent outputs is less than M (failure). The entire
program execution time is a random variable depending on the parameters of the versions (execution time
and reliability), and on the number of versions that can be executed simultaneously.
In the RBS approach after execution of each version, its output is tested by an acceptance test block
(ATB). If the ATB accepts the version output, the process is terminated and the version output becomes
the output of the entire system. If all N versions do not produce the accepted output, the system fails. If
the computational resources allow simultaneous execution of several versions, the versions are executed
according to some predefined sequence and the entire program terminates either when one of versions
produces the output accepted by the ATB (success) or when after the execution of all the N versions no
output is accepted by the ATB (failure). If the acceptance test time is included into the execution time of
each version, the RBS performance model becomes identical to the performance model of the NVP with
M=1.

The fault-tolerant programs can be considered as multi-state systems with the system performance
defined as its total execution time. Estimating the effect of the fault-tolerant programming on system
performance is especially important in safety critical real-time computer applications.
Since the performance of fault-tolerant programs depends on availability of computational resources, the
impact of hardware availability should also be taken into account when the system reliability is evaluated.
It can be seen that the fault-tolerant system performance and reliability depend on characteristics of
software versions as well as on the sequence of their execution.
The paper presents algorithms for reliability and performance evaluation for software and hardware-
software fault-tolerant systems. It also formulates the problems of optimal version sequencing and
optimal version choice (structure optimization) in such systems and suggests algorithms for solving these
problems.

2. Model of System with Fault-Tolerant Software Components

A software system consists of C components. Each component performs a subtask and the sequential
execution of the components performs a major task.
It is assumed that Nc functionally equivalent versions are available for each component c. Each version i
has an estimated reliability rci and constant execution time τci. Failures of versions for each component are
statistically independent as well as the total failures of the different components.
The software versions in each component c run on parallel hardware units. The total number of units is
Hc. The units are s-independent and identical. The availability of each unit is Ac. The number of units
available at the moment hc determines the amount of available computational resources and, therefore, the
number of versions that can be executed simultaneously Lc(hc). No hardware unit can change its state
during the software execution.
The versions of each component c start their execution in accordance with a predetermined ordered list. Lc
first versions from the list start their execution simultaneously (at time 0). If the number of terminated
versions is less than Mc, after termination of each version a new version from the list starts its execution
immediately. If the number of terminated versions is not less than Mc, after termination of each version
the voter compares the outputs. If Mc outputs are identical, the component terminates its execution
(terminating all the versions that are still executed), otherwise a new version from the list is executed
immediately. If after termination of Nc versions the number of identical outputs is less than Mc the
component and the entire system fail.
In the case of component success, the time of the entire component execution is equal to the termination
time of the version that has produced the Mc-th correct output (in most cases the time needed by the voter
to make the decision can be neglected). It can be seen that the component execution time is a random
variable depending on the reliability and the execution time of the component versions and on the
availability of the hardware units.
The examples of the task execution time diagrams corresponding to a component with Nc=3, Mc=2 for a
given sequence of versions execution (the versions are numbered according to this sequence) and
different values of Lc are presented in Fig. 1.
The sum of the random execution times of each component gives the random task execution time for the
entire system. In order to estimate both the system's reliability and its performance, different measures
can be used depending on the application.
In applications where the execution time of each task is of critical importance, the system reliability R(T*)
is defined as a probability that the correct output is produced in time less than T*.
In applications where the average system productivity (the number of executed tasks) over a fixed
mission time is of interest, the system reliability is defined as the probability that it produces correct
outputs without respect to the total execution time, (this index can be referred to as R(∞)) while the

conditional expected system execution time E is considered to be a measure of its performance. This
index determines the system expected execution time given that the system does not fail.

Figure 1: Time diagrams for software component with N

3. Fault-Tolerant System Optimization Problems

The method for obtaining the pmf of the random system task execution time
Generating Function technique (Ushakov (1987), Lisnianski and Levitin (2
algorithm (Levitin (2004a)) allows one to evaluate in a short time the follo
indices: the system reliability defined as the probability that it produces the
than a specified value T*; the probability that the correct output is obtain
execution time and the expected system execution time on condition that the sy
Having the fast algorithm for the fault tolerant system performance evaluatio
optimization problems aimed at improving the system performance.
Since the sequence of version execution affects the probabilistic distribution of
two different optimization problems can be formulated in which the sequenc
reliability R(T*) or minimizing its conditional expected execution time E are
(2004)b). In these problems the set of versions to be executed is determined fo
The optimal version sequencing can improve the system performance without a
Another optimization problem is how to choose the optimal structure of soft
list of available versions. Consider a set of Jc different versions available fo
version j (1≤j≤Jc) is characterized by its reliability rc(j), execution time
permutation zc of Jc different integer numbers ranging from 1 to Jc determines t
can be used in component c. Let hcj=1 if the version j is chosen to be included
otherwise. The vector determines the subset of chosen version},...,{ 1 ccJc hh=ch

Having the vectors zc and hc one can determine the execution order vc of the ch
from zc any number k for which hck=0. The total number of versions in compo
of vector vc) is determined as

 .
1

∑
=

=
cJ

j
cjc hN

The system structure optimization problem can now be formulated as follows
that maximize R(T*) subject to cost constraint:

*)(
1

∑ ∑
= ∈

≤=
C

c j
c

c

SjsS
v

.

10 16 12

L2=1 L2=2

26 38 16 22

1 3
 1 2 3

L2=3

2
1

 2

3

c=3, Mc=2

 is based on the Universal
003)). This corresponding
wing system performance
correct output in less time
ed without respect to the
stem does not fail.
n one can effectively solve

 the system execution time,
es maximizing the system
 to be determined (Levitin
r each software component.
dditional expenses.

ware components from the
r each component c. Each
 τc(j) and cost sc(j). The
he order of the version that
into component c and hcj=0
s for component c.
osen versions by removing
nent c (equal to the length

: find vectors vc for 1≤c≤C

16 12

4. Example of Software System Optimization

Consider a fault-tolerant system consisting of four software components running on single reliable
hardware unit. The parameters of versions that can be used in these components are presented in Table 1.
This table contains the values of Mc and Lc for each component and the cost, reliability and execution time
for each version.
For T*=300 four different solutions were obtained for different cost constraints. These solutions are
presented in Table 2. The tables contain the system cost and reliability for each solution, the expected
conditional execution time, minimal and maximal possible system execution times and the corresponding
sequences of the chosen versions.

Table 1: Parameters of system components for the numerical example

No of versions
component M L 1 2 3 4 5 6 7 8

τ 17 10 20 32 30 75 - -
1

1 r 0.71 0.85 0.85 0.89 0.95 0.98 - -

1

 c 5 15 7 8 12 6 - -
τ 28 55 35 55 58 - - -

2

2

2 r 0.82 0.82 0.88 0.90 0.93 - - -
 c 11 8 18 10 16 - - -

τ 17 20 38 38 48 50 41 63
3

3

4 r 0.80 0.80 0.86 0.90 0.90 0.94 0.98 0.98

 c 4 3 4 6 5 4 9 6
τ 17 10 20 32 - - - -

4

2

1 r 0.75 0.85 0.93 0.97 - - - -
 c 12 16 17 17 - - - -

τ 30 54 40 65 70 - - -
5

1

3 r 0.70 0.80 0.80 0.80 0.89 - - -

 c 5 9 11 7 12 - - -

Table 2: Parameters of obtained solutions

S* Sequence of versions S R E tmin tmax

160 341|4521|85632|324|413 160 0.951 210.82 188 369
140 53|541|28361|431|51 140 0.889 231.02 208 335
120 6|241|61372|241|31 120 0.813 252.87 240 307
100 4|142|2386|43|41 100 0.672 238.05 219 295

References

Teng, X., Pham H., (2003). Software fault tolerance, in Reliability Engineering Handbook, H. Pham
(Ed.), Springer, 585-611
Ushakov, I. (1987). A universal generating function. Soviet Journal Computer Systems Science, 61-73
Lisnianski A., Levitin, G. (2003). Multi-state system reliability. Assessment, optimization and
applications. World Scientific.
Levitin, G. (2004a) Reliability and performance analysis for fault-tolerant programs consisting of versions
with different characteristics. To appear in Reliability Engineering and System Safety.
Levitin, G. (2004b) Optimal version sequencing in fault-tolerant programs. To appear in Asia-Pacific
Journal of Operational Research.

